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The new identity for the scattering matrix of exactly solvable
models?
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Abstract. We discovered a simple quadratic equation, which relates scattering phases of particles on Fermi
surface. We consider one-dimensional Bose gas and XXZ Heisenberg quantum spin chain.
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1 Introduction

In order to define everything precisely we consider a spe-
cific model. Let us concentrate our attention on Bose gas
with delta interaction (quantum Nonlinear Schrödinger
equation).

The Hamiltonian of the model is

H =

∫
dx
(
∂xΨ

†(x)∂xΨ(x)

+ cΨ†(x)Ψ†(x)Ψ(x)Ψ(x) − hΨ†(x)Ψ(x)
)
. (1.1)

Here 0 < c < ∞, h > 0 are a coupling constant and a
chemical potential respectively. The canonical Bose fields
Ψ(x, t), Ψ†(x, t), (x, t ∈ R) obey the standard commuta-
tion relation

[Ψ(x, t), Ψ†(y, t)] = δ(x− y). (1.2)

They act in the Fock space with a vacuum vector |0〉:

Ψ(x, t)|0〉 = 0. (1.3)

Alternatively the model can be formulated on the lan-
guage of many-body quantum mechanics. In this case the
Hamiltonian of the system of N identical Bose particles
can represented as

HN = −
N∑
j=1

∂2

∂x2
j

+ 2c
∑

N≥j>k≥1

δ(xj − xk)− hN. (1.4)

In this form the model is called Bose gas with delta in-
teraction. For nonzero value of the coupling constant the
Pauli principal is valid (chapter VII of [1]).
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The model was solved by Bethe Ansatz [2]. The ground
state is a Fermi sphere. In order to describe it precisely, it
is convenient to introduce spectral parameter λ (similar to
rapidity). The derivative of the momentum of the particle
with respect to the spectral parameter is

∂k(λ)

∂λ
= 2πρ(λ), (1.5)

where the function ρ(λ) is defined by an integral equation

ρ(λ) −
1

2π

∫ q

−q
K(λ, µ)ρ(µ) dµ =

1

2π
· (1.6)

Here q is the value of the spectral parameter on the Fermi
surface, and the kernel of an integral operator is

K(λ, µ) =
2c

c2 + (λ− µ)2
· (1.7)

One can prove that the integral operator Î − 1
2π K̂ is not

degenerated, and hence, the equation (1.6) has unique so-
lution ([3], chapter I of [1]). The density of the gas is given
by

D =

∫ q

−q
ρ(λ) dλ. (1.8)

There is one type of particles in the model. It is defined
at λ ≥ q or λ ≤ −q. The energy of the particle ε(λ) is

ε(λ)−
1

2π

∫ q

−q
K(λ, µ)ε(µ) dµ = λ2 − h. (1.9)

It vanishes on the Fermi surface ε(±q) = 0. The momen-
tum is

k(λ) = λ+

∫ q

−q
θ(λ− µ)ρ(µ) dµ. (1.10)
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Here

θ(λ) = i ln

(
ic+ λ

ic− λ

)
. (1.11)

One can calculate a scattering matrix of particle with
spectral parameter λ on another particle with spectral pa-
rameter µ (chapter I of [1]). There is no multi-particle
production or reflection.The transition coefficient is equal
to

exp{2πiF (λ|µ)}. (1.12)

The phase F (λ|µ) is defined by an integral equation

F (λ|µ)−
1

2π

∫ q

−q
K(λ, ν)F (ν|µ) dν =

1

2π
θ(λ− µ).

(1.13)

The most important are scattering phases of particles
on the Fermi edges F (q|q) and F (q|− q). In this paper we
shall prove the identity

det

(
1− F (q|q) F (q| − q)
−F (−q|q) 1 + F (−q| − q)

)
= 1. (1.14)

This is the main result of the paper. Another way to
rewrite this identity is(

1− F (q|q)
)2

− F 2(q| − q) = 1. (1.15)

Here we have used the property F (−λ| − µ) = −F (λ|µ),
which follows from the antisymmetry of θ(λ − µ) =
−θ(µ− λ).

This identity also permit us to relate “fractional”
charge to the phase shift on the Fermi surface. Fractional
charge Z appears in the formulæ for finite size corrections
(chapter I of [1]). This value is necessary for conformal de-
scription of the model (chapter XVIII of [1]) and it is equal
to

Z = 2πρ(q). (1.16)

Using the equations (1.6, 1.13) for ρ(λ) and F (λ|µ), one
can find the relationship between the fractional charge and
the scattering phase on the Fermi surface

Z = 1 + F (q| − q)− F (q|q). (1.17)

Indeed, it follows from (1.6) that

[2πρ(λ) − 1] −
1

2π

∫ q

−q
K(λ, µ)[2πρ(µ)− 1] dµ

=
1

2π
[θ(λ + q)− θ(λ− q)]. (1.18)

Comparing this equation with (1.13) we find

2πρ(λ) = 1 + F (λ| − q)− F (λ|q), (1.19)

what, in turns, implies (1.17). The identity (1.15) allows
us to find new relation

Z−1 = 1− F (q| − q)− F (q|q). (1.20)

This identity helps to prove a consistency between con-
formal description of temperature correlation functions at
low temperatures and asymptotic formulas for time and
temperature dependent correlation functions, arising from
determinant representation of correlation functions [5].

2 The proof of the main identity

In this section we give the proof of the identity (1.14). In
order to do this, one should calculate the derivatives of
the function F (λ|µ) with respect to λ, µ and q. Using the
basic equation (1.13), we have

∂F (λ|µ)

∂λ
−

1

2π

∫ q

−q
K(λ, ν)

∂F (ν|µ)

∂ν
dν

=
1

2π
K(λ, µ)−

1

2π
K(λ, q)F (q|µ)

+
1

2π
K(λ,−q)F (−q|µ), (2.1)

∂F (λ|µ)

∂µ
−

1

2π

∫ q

−q
K(λ, ν)

∂F (ν|µ)

∂µ
dν = −

1

2π
K(λ, µ),

(2.2)

∂F (λ|µ)

∂q
−

1

2π

∫ q

−q
K(λ, ν)

∂F (ν|µ)

∂q
dν

=
1

2π
K(λ, q)F (q|µ) +

1

2π
K(λ,−q)F (−q|µ). (2.3)

Here we have used that ∂
∂λ
θ(λ− µ) = K(λ, µ).

As we have mentioned already, the re-solvent of the
operator Î − 1

2π K̂ exists and it is equal to

R̂ =

(
Î −

1

2π
K̂

)−1
1

2π
K̂. (2.4)

The derivatives of the function F (λ|µ) can be expressed
in terms of the re-solvent

∂F (λ|µ)

∂λ
= R(λ, µ)−R(λ, q)F (q|µ)

+ R(λ,−q)F (−q|µ)

∂F (λ|µ)

∂µ
= −R(λ, µ)

∂F (λ|µ)

∂q
= R(λ, q)F (q|µ) +R(λ,−q)F (−q|µ). (2.5)



V. Korepin and N. Slavnov: Identity for the scattering matrix 557

Using these equations one can find the complete deriva-
tives with respect to q of functions F (q|q), F (q| − q) etc.:

d

dq
F (q| ± q) =

(
∂

∂λ
±

∂

∂µ
+

∂

∂q

)
F (λ|µ)

∣∣∣∣ λ = q
µ = ±q

,

d

dq
F (−q| ± q) =

(
−
∂

∂λ
±

∂

∂µ
+

∂

∂q

)
F (λ|µ)

∣∣∣∣ λ = −q
µ = ±q

.

(2.6)

Substituting here equations (2.5) we find

d

dq
F (q| − q) = 2R(q,−q)

(
1 + F (−q| − q)

)
,

d

dq
F (−q|q) = −2R(−q, q)

(
1− F (q|q)

)
,

d

dq
F (q|q) = 2R(q,−q)F (−q|q),

d

dq
F (−q| − q) = 2R(−q, q)F (q| − q).

(2.7)

Now it is sufficient to take the derivative with respect
to q of the l.h.s. of the equation (1.14):

d

dq
det

(
1− F (q|q) F (q| − q)
−F (−q|q) 1 + F (−q| − q)

)
= −

dF (q|q)

dq

(
1 + F (−q| − q)

)
+
(

1− F (q|q)
)dF (−q| − q)

dq

+
dF (q| − q)

dq
F (−q|q) + F (q| − q)

dF (−q|q)

dq

= −2R(q,−q)F (−q|q)
(

1 + F (−q| − q)
)

+2R(−q, q)F (q| − q)
(

1− F (q|q)
)

+2R(q,−q)F (−q|q)
(

1 + F (−q| − q)
)

−2R(−q, q)F (q| − q)
(

1− F (q|q)
)
. (2.8)

On the other hand, it is clear that for q = 0 we have

det

(
1− F (q|q) F (q| − q)
−F (−q|q) 1 + F (−q| − q)

)∣∣∣∣
q=0

= 1. (2.9)

Thus, the identity (1.14) is proved. We would like to em-
phasize the we did not use the explicit expressions for the
kernel K(λ, µ) and the function θ(λ−µ). In fact, we have
used only three properties:

a) the existence of the re-solvent of the operator Î −
1

2π K̂;
b) the kernel K(λ, µ) and the function θ(λ−µ) depend

on the difference;
c) the derivative of θ(λ − µ) is equal to the kernel

K(λ, µ).

In order to reduce (1.14) to the identity (1.15) one
should use also the antisymmetry property θ(λ − µ) =
−θ(µ− λ).

Thus, the quadratic identity for the scattering phase is
valid for a wide class of completely integrable models, but
not only for the one-dimensional Bose gas. In particular, it
is valid for scattering phases of elementary particles (spin
waves) of XXZ Heisenberg spin chain in a magnetic field
([4], see also chapter II of [1]).
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